7 - FATORAÇÃO

Fatoração é um processo utilizado na matemática que consiste em representar um número ou uma expressão como produto de fatores.
Ao escrever um polinômio como a multiplicação de outros polinômios, frequentemente conseguimos simplificar a expressão.
Confira abaixo os tipos de fatoração de polinômios:
Fator Comum em Evidência
Usamos esse tipo de fatoração quando existe um fator que se repete em todos os termos do polinômio.
Esse fator, que pode conter número e letras, será colocado na frente dos parênteses.
Dentro dos parênteses ficará o resultado da divisão de cada termo do polinômio pelo fator comum.
Na prática, vamos fazer os seguintes passos:
1º) Identificar se existe algum número que divide todos os coeficientes do polinômio e letras que se repetem em todos os termos.
2º) Colocar os fatores comuns (número e letras) na frente dos parênteses (em evidência).
3º) Colocar dentro dos parênteses o resultado da divisão de cada fator do polinômio pelo fator que está em evidência. No caso das letras, usamos a regra da divisão de potências de mesma base.
Exemplos
a) Qual é a forma fatorada do polinômio 12x + 6y - 9z?
Primeiro, identificamos que o número 3 divide todos os coeficientes e que não existe nenhuma letra que se repete.
Colocamos o número 3 na frente dos parênteses, dividimos todos os termos por três e o resultado iremos colocar dentro dos parênteses:
12x + 6y - 9z = 3 (4x + 2y - 3z)
b) Fatore 2a2b + 3a3c - a4.
Como não existe número que divide ao mesmo tempo 2, 3 e 1, não iremos colocar nenhum número na frente dos parênteses.
A letra a se repete em todos os termos. O fator comum será o a2, que é o menor expoente do a na expressão.
Dividimos cada termo do polinômio por a2:
2a2 b : a2 = 2a2 - 2 b = 2b
3a3c : a2 = 3a3 - 2 c = 3ac
a4 : a2 = a2
Colocamos o a2 na frente dos parênteses e os resultados das divisões dentro dos parênteses:
2a2b + 3a3c - a4 = a2 (2b + 3ac - a2)
Agrupamento
No polinômio que não exista um fator que se repita em todos os termos, podemos usar a fatoração por agrupamento.
Para isso, devemos identificar os termos que podem ser agrupados por fatores comuns.
Nesse tipo de fatoração, colocamos os fatores comuns dos agrupamentos em evidência.
Exemplo
Fatore o polinômio mx + 3nx + my + 3ny
Os termos mx e 3nx tem como fator comum o x. Já os termos my e 3ny possuem como fator comum o y.
Colocando esses fatores em evidência:
x (m + 3n) + y (m + 3n)
Note que o (m + 3n) agora também se repete nos dois termos.
Colocando novamente em evidência, encontramos a forma fatorada do polinômio:
mx + 3nx + my + 3ny = (m + 3n) (x + y)
Trinômio Quadrado Perfeito
Trinômios são polinômios com 3 termos.
Os trinômios quadrados perfeitos a2 + 2ab + b2 e a2 - 2ab + b2 resultam do produto notável do tipo (a + b)2 e (a - b)2.
Assim, a fatoração do trinômio quadrado perfeito será:
a2 + 2ab + b2 = (a + b)2 (quadrado da soma de dois termos)
a2 - 2ab + b2 = (a - b)2 (quadrado da diferença de dois termos)
Para saber se realmente um trinômio é quadrado perfeito, fazemos o seguinte:
1º) Calcular a raiz quadrada dos termos que aparecem ao quadrado.
2º) Multiplicar os valores encontrados por 2.
3º) Comparar o valor encontrado com o termo que não apresenta quadrados. Se forem iguais, é um quadrado perfeito.
Exemplos
a) Fatorar o polinômio x2 + 6x + 9
Primeiro, temos que testar se o polinômio é quadrado perfeito.
√x2 = x e √9 = 3
Multiplicando por 2, encontramos: 2 . 3 . x = 6x
Como o valor encontrado é igual ao termo que não está ao quadrado, o polinômio é quadrado perfeito.
Assim, a fatoração será:
x2 + 6x + 9 = (x + 3)2
b) Fatorar o polinômio x2 - 8xy + 9y2
Testando se é trinômio quadrado perfeito:
√x2 = x e √9y2 = 3y
Fazendo a multiplicação: 2 . x . 3y = 6xy
O valor encontrado não coincide com o termo do polinômio (8xy ≠ 6xy).
Como não é um trinômio quadrado perfeito, não podemos usar esse tipo de fatoração.
Diferença de Dois Quadrados
Para fatorar polinômios do tipo a2 - b2 usamos o produto notável da soma pela diferença.
Assim, a fatoração de polinômios desse tipo será:
a2 - b2 = (a + b) . (a - b)
Para fatorar, devemos calcular a raiz quadrada dos dois termos.
Depois, escrever o produto da soma dos valores encontrados pela diferença desses valores.
Exemplo
Fatorar o binômio 9x2 - 25.
Primeiro, encontrar a raiz quadrada dos termos:
√9x2 = 3x e √25 = 5
Escrever esses valores como produto da soma pela diferença:
9x2 - 25 = (3x + 5) . (3x - 5)
Cubo Perfeito
Os polinômios a3 + 3a2b + 3ab2 + b3 e a3 - 3a2b + 3ab2 - b3 resultam do produto notável do tipo (a + b)3 ou (a - b)3.
Assim, a forma fatorada do cubo perfeito é:
a3 + 3a2b + 3ab2 + b3 = (a + b)3
a3 - 3a2b + 3ab2 - b3 = (a - b)3
Para fatorar polinômios desse tipo, devemos calcular a raiz cúbica dos termos ao cubo.
Depois, é necessário confirmar se o polinômio é cubo perfeito.
Se for, elevamos ao cubo a soma ou a subtração dos valores das raízes cúbicas encontradas.
Exemplos
a) Fatorar o polinômio x3 + 6x2 + 12x + 8
Primeiro, vamos calcular a raiz cúbica dos termos ao cubo:
3√ x3 = x e 3√ 8 = 2
Depois, confirmar se é cubo perfeito:
3 . x2 . 2 = 6x2
3 . x . 22 = 12x
Como os termos encontrados são iguais aos termos do polinômio, então é um cubo perfeito.
Assim, a fatoração será:
x3 + 6x2 + 12x + 8 = (x + 2)3
b) Fatorar o polinômio a3 - 9a2 + 27a - 27
Primeiro vamos calcular a raiz cúbica dos termos ao cubo:
3√ a3 = a e 3√ - 27 = - 3
Depois confirmar se é cubo perfeito:
3 . a2 . (- 3) = - 9a2
3 . a . (- 3)2 = 27a
Como os termos encontrados são iguais aos termos do polinômio, então é um cubo perfeito.
Assim, a fatoração será:
a3 - 9a2 + 27a - 27 = (a - 3)3
Educando Mais! Todos os direitos reservados - © 2019 Educando Mais! 
  • Facebook
  • Canal Educando Mais!
  • Instagram
  • Rádio Educando Mais
  • Rádio Educando Mais
  • Rádio Educando Mais
  • Rádio Educando Mais
  • RSS ícone social
E-mail do Educando Mais!